Polynomial irreducibility testing through Minkowski summand computation
نویسندگان
چکیده
In this paper, we address the problem of deciding absolute irreducibility of multivariate polynomials. Our work has been motivated by a recent work due to Gao et. al. [1, 2, 3] where they have considered the problem for bivariate polynomials by studying the integral decomposability of polygons in the sense of Minkowski sum. We have generalized their result to polynomials containing arbitrary number of variables by reducing the problem of Minkowski decomposability of an integer (lattice) polytope to an integer linear program. We also present experimental results of computation of Minkowski decomposition using this integer program.
منابع مشابه
Decomposition of Polytopes and Polynomials
Motivated by a connection with the factorization of multivariable polynomials, we study integral convex polytopes and their integral decompositions in the sense of the Minkowski sum. We first show that deciding decomposability of integral polygons is NP-complete then present a pseudo-polynomial time algorithm for decomposing polygons. For higher dimensional polytopes, we give a heuristic algori...
متن کاملAbsolute Irreducibility of Polynomials via Newton Polytopes
A multivariable polynomial is associated with a polytope, called its Newton polytope. A polynomial is absolutely irreducible if its Newton polytope is indecomposable in the sense of Minkowski sum of polytopes. Two general constructions of indecomposable polytopes are given, and they give many simple irreducibility criteria including the well-known Eisenstein’s criterion. Polynomials from these ...
متن کاملMinkowski decomposition of convex lattice polygons
A relatively recent area of study in geometric modelling concerns toric Bézier patches. In this line of work, several questions reduce to testing whether a given convex lattice polygon can be decomposed into a Minkowski sum of two such polygons and, if so, to finding one or all such decompositions. Other motivations for this problem include sparse resultant computation, especially for the impli...
متن کاملFast Parallel Absolute Irreducibility Testing
We present a fast parallel deterministic algorithm for testing multivariate integral polynomials for absolute irreducibility, that is irreducibility over the complex numbers. More precisely, we establish that the set of absolutely irreducible integral polynomials belongs to the complexity class NC of Boolean circuits of polynomial size and logarithmic depth. Therefore it also belongs to the cla...
متن کاملTesting polynomial irreducibility without GCDs
We determine classes of degrees where testing irreducibility for univariate polynomials over finite fields can be done without any GCD computation. This work was partly funded by the INRIA Associate Team “Algorithms, Numbers, Computers” (http://www.loria.fr/~zimmerma/anc.html). Key-words: finite fields, irreducible polynomial, GCD ∗ ANU, Canberra, [email protected] Test d’irréductibilité de polynôme...
متن کامل